DIA-NN 2.0 Academia (Data-Independent Acquisition by Neural Networks) Compiled on Jan 28 2025 11:23:41 Current date and time: Wed Apr 30 10:19:17 2025 CPU: GenuineIntel Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz SIMD instructions: AVX AVX2 AVX512CD AVX512F FMA SSE4.1 SSE4.2 Logical CPU cores: 44 diann.exe --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S1_WT_1_S1-C1_1_6641.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S2_WT_2_S1-C2_1_6642.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S3_WT_3_S1-C3_1_6643.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S4_A_1_S1-C4_1_6644.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S5_A_2_S1-C5_1_6645.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S6_A_3_S1-C6_1_6646.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S7_B_1_S1-C7_1_6647.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S8_B_2_S1-C8_1_6648.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S9_B_3_S1-C9_1_6649.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S10_Teth_1_S1-B7_1_6638.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S11_Teth_2_S1-B8_1_6639.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S12_Teth_3_S1-B9_1_6640.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S13_AB_1_S1-C10_1_6652.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S14_AB_2_S1-C11_1_6653.d --f \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S15_AB_3_S1-C12_1_6654.d --lib --threads 44 --verbose 1 --out D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.parquet --qvalue 0.01 --matrices --out-lib D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.parquet --gen-spec-lib --predictor --reannotate --fasta camprotR_240512_cRAP_20190401_full_tags.fasta --cont-quant-exclude cRAP- --fasta D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\UP000029965_60711_Green_Monkey.fasta --fasta-search --min-fr-mz 200 --max-fr-mz 1800 --met-excision --min-pep-len 7 --max-pep-len 30 --min-pr-mz 300 --max-pr-mz 1800 --min-pr-charge 1 --max-pr-charge 4 --cut K*,R* --missed-cleavages 1 --unimod4 --reanalyse --rt-profiling -tims-scan Thread number set to 44 Output will be filtered at 0.01 FDR Precursor/protein x samples expression level matrices will be saved along with the main report A spectral library will be generated Deep learning will be used to generate a new in silico spectral library from peptides provided Library precursors will be reannotated using the FASTA database Peptides corresponding to protein sequence IDs tagged with cRAP- will be excluded from normalisation as well as quantification of protein groups that do not include proteins bearing the tag DIA-NN will carry out FASTA digest for in silico lib generation Min fragment m/z set to 200 Max fragment m/z set to 1800 N-terminal methionine excision enabled Min peptide length set to 7 Max peptide length set to 30 Min precursor m/z set to 300 Max precursor m/z set to 1800 Min precursor charge set to 1 Max precursor charge set to 4 In silico digest will involve cuts at K*,R* Maximum number of missed cleavages set to 1 Cysteine carbamidomethylation enabled as a fixed modification MBR enabled; .quant files will only be saved to disk during the first pass The spectral library (if generated) will retain the original spectra but will include empirically-aligned RTs DIA-NN will automatically optimise the mass accuracy for the first run of the experiment, use this mode for preliminary analyses only WARNING: incorrect settings, the in silico-predicted library must be generated in a separate pipeline step and then used to process the raw data, now without activating FASTA digest WARNING: reannotation of the library should not be combined with the analysis of raw data but rather needs to be performed in a separate step 15 files will be processed [0:00] Loading FASTA camprotR_240512_cRAP_20190401_full_tags.fasta [0:00] Loading FASTA D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\UP000029965_60711_Green_Monkey.fasta [0:03] Processing FASTA [0:06] Assembling elution groups [0:12] 4057560 precursors generated [0:12] Gene names missing for some isoforms [0:12] Library contains 19250 proteins, and 16585 genes [0:16] [0:25] [6:10] [6:38] [6:41] [6:42] Saving the library to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.predicted.speclib [6:51] Initialising library [7:12] Loading spectral library D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.predicted.speclib [7:18] Library annotated with sequence database(s): camprotR_240512_cRAP_20190401_full_tags.fasta; D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\UP000029965_60711_Green_Monkey.fasta [7:19] Spectral library loaded: 19250 protein isoforms, 26632 protein groups and 4057560 precursors in 1262959 elution groups. [7:19] Loading protein annotations from FASTA camprotR_240512_cRAP_20190401_full_tags.fasta [7:19] Loading protein annotations from FASTA D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\UP000029965_60711_Green_Monkey.fasta [7:20] Annotating library proteins with information from the FASTA database [7:20] Gene names missing for some isoforms [7:20] Library contains 19250 proteins, and 16585 genes [7:24] Initialising library First pass: generating a spectral library from DIA data [7:45] File #1/15 [7:45] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S1_WT_1_S1-C1_1_6641.d WARNING: for the vast majority of timsTOF datasets it is better to manually fix both the MS1 and MS2 mass accuracies to 15 ppm [8:15] Pre-processing... [8:55] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [8:58] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [12:15] RT window set to 1.47699 [12:15] IM window set to 0.0419993 [12:15] Peak width: 2.656 [12:15] Scan window radius set to 5 [12:15] Recommended MS1 mass accuracy setting: 7 ppm [16:44] Optimised mass accuracy: 10 ppm [18:23] Main search [20:16] Removing low confidence identifications [20:19] Removing interfering precursors [20:25] Training neural networks on 13180 target and 6985 decoy PSMs [20:33] Number of IDs at 0.01 FDR: 4814 [20:35] Calculating protein q-values [20:35] Number of genes identified at 1% FDR: 662 (precursor-level), 563 (protein-level) (inference performed using proteotypic peptides only) [20:35] Quantification [20:37] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S1_WT_1_S1-C1_1_6641.d.quant [20:37] File #2/15 [20:37] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S2_WT_2_S1-C2_1_6642.d [21:08] Pre-processing... [21:51] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [21:54] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [25:55] RT window set to 1.31964 [25:55] IM window set to 0.0467232 [25:55] Recommended MS1 mass accuracy setting: 8 ppm [28:01] Main search [29:56] Removing low confidence identifications [29:59] Removing interfering precursors [30:04] Training neural networks on 12475 target and 6772 decoy PSMs [30:12] Number of IDs at 0.01 FDR: 4215 [30:14] Calculating protein q-values [30:14] Number of genes identified at 1% FDR: 617 (precursor-level), 521 (protein-level) (inference performed using proteotypic peptides only) [30:14] Quantification [30:16] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S2_WT_2_S1-C2_1_6642.d.quant [30:16] File #3/15 [30:16] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S3_WT_3_S1-C3_1_6643.d [30:46] Pre-processing... [31:26] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [31:29] Calibrating with mass accuracies 30 (MS1), 23 (MS2) [37:00] RT window set to 1.30759 [37:00] IM window set to 0.0464535 [37:01] Recommended MS1 mass accuracy setting: 7 ppm [39:00] Main search [40:48] Removing low confidence identifications [40:51] Removing interfering precursors [40:56] Training neural networks on 11589 target and 6423 decoy PSMs [41:04] Number of IDs at 0.01 FDR: 3972 [41:05] Calculating protein q-values [41:06] Number of genes identified at 1% FDR: 567 (precursor-level), 474 (protein-level) (inference performed using proteotypic peptides only) [41:06] Quantification [41:08] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S3_WT_3_S1-C3_1_6643.d.quant [41:08] File #4/15 [41:08] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S4_A_1_S1-C4_1_6644.d [41:38] Pre-processing... [42:19] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [42:22] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [47:57] RT window set to 1.35009 [47:57] IM window set to 0.0469329 [47:58] Recommended MS1 mass accuracy setting: 7 ppm [50:05] Main search [52:02] Removing low confidence identifications [52:05] Removing interfering precursors [52:10] Training neural networks on 13353 target and 7168 decoy PSMs [52:19] Number of IDs at 0.01 FDR: 4434 [52:20] Calculating protein q-values [52:20] Number of genes identified at 1% FDR: 669 (precursor-level), 569 (protein-level) (inference performed using proteotypic peptides only) [52:20] Quantification [52:22] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S4_A_1_S1-C4_1_6644.d.quant [52:22] File #5/15 [52:22] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S5_A_2_S1-C5_1_6645.d [52:52] Pre-processing... [53:35] 1068 MS1 and 34152 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [53:38] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [59:17] RT window set to 1.63468 [59:17] IM window set to 0.0409003 [59:17] Recommended MS1 mass accuracy setting: 8 ppm [61:57] Main search [64:12] Removing low confidence identifications [64:15] Removing interfering precursors [64:20] Training neural networks on 10181 target and 5697 decoy PSMs [64:29] Number of IDs at 0.01 FDR: 3222 [64:30] Calculating protein q-values [64:30] Number of genes identified at 1% FDR: 468 (precursor-level), 411 (protein-level) (inference performed using proteotypic peptides only) [64:30] Quantification [64:32] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S5_A_2_S1-C5_1_6645.d.quant [64:32] File #6/15 [64:32] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S6_A_3_S1-C6_1_6646.d [65:02] Pre-processing... [65:41] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [65:44] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [70:20] RT window set to 1.9319 [70:20] IM window set to 0.0456707 [70:20] Recommended MS1 mass accuracy setting: 7 ppm [72:40] Main search [75:02] Removing low confidence identifications [75:05] Removing interfering precursors [75:10] Training neural networks on 10492 target and 5454 decoy PSMs [75:18] Number of IDs at 0.01 FDR: 3548 [75:19] Calculating protein q-values [75:19] Number of genes identified at 1% FDR: 523 (precursor-level), 448 (protein-level) (inference performed using proteotypic peptides only) [75:19] Quantification [75:21] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S6_A_3_S1-C6_1_6646.d.quant [75:21] File #7/15 [75:21] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S7_B_1_S1-C7_1_6647.d [75:52] Pre-processing... [76:30] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [76:33] Calibrating with mass accuracies 30 (MS1), 21 (MS2) [82:53] RT window set to 1.66326 [82:53] IM window set to 0.0438572 [82:54] Recommended MS1 mass accuracy setting: 7 ppm [85:00] Main search [86:57] Removing low confidence identifications [87:00] Removing interfering precursors [87:05] Training neural networks on 10481 target and 5514 decoy PSMs [87:13] Number of IDs at 0.01 FDR: 3557 [87:14] Calculating protein q-values [87:14] Number of genes identified at 1% FDR: 556 (precursor-level), 487 (protein-level) (inference performed using proteotypic peptides only) [87:14] Quantification [87:16] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S7_B_1_S1-C7_1_6647.d.quant [87:16] File #8/15 [87:16] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S8_B_2_S1-C8_1_6648.d [87:46] Pre-processing... [88:25] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [88:28] Calibrating with mass accuracies 30 (MS1), 23 (MS2) [93:01] RT window set to 1.74394 [93:01] IM window set to 0.0428342 [93:02] Recommended MS1 mass accuracy setting: 7 ppm [95:18] Main search [97:32] Removing low confidence identifications [97:35] Removing interfering precursors [97:40] Training neural networks on 9865 target and 4878 decoy PSMs [97:48] Number of IDs at 0.01 FDR: 4251 [97:49] Calculating protein q-values [97:50] Number of genes identified at 1% FDR: 620 (precursor-level), 532 (protein-level) (inference performed using proteotypic peptides only) [97:50] Quantification [97:52] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S8_B_2_S1-C8_1_6648.d.quant [97:52] File #9/15 [97:52] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S9_B_3_S1-C9_1_6649.d [98:22] Pre-processing... [98:59] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [99:02] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [106:36] RT window set to 1.84422 [106:36] IM window set to 0.0443344 [106:36] Recommended MS1 mass accuracy setting: 7 ppm [109:35] Main search [111:33] Removing low confidence identifications [111:36] Removing interfering precursors [111:41] Training neural networks on 7929 target and 3929 decoy PSMs [111:49] Number of IDs at 0.01 FDR: 2704 [111:50] Calculating protein q-values [111:50] Number of genes identified at 1% FDR: 447 (precursor-level), 379 (protein-level) (inference performed using proteotypic peptides only) [111:50] Quantification [111:52] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S9_B_3_S1-C9_1_6649.d.quant [111:52] File #10/15 [111:52] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S10_Teth_1_S1-B7_1_6638.d [112:23] Pre-processing... [113:00] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [113:03] Calibrating with mass accuracies 30 (MS1), 23 (MS2) [117:29] RT window set to 1.62563 [117:29] IM window set to 0.0446048 [117:29] Recommended MS1 mass accuracy setting: 7 ppm [119:29] Main search [121:23] Removing low confidence identifications [121:26] Removing interfering precursors [121:32] Training neural networks on 13158 target and 6673 decoy PSMs [121:40] Number of IDs at 0.01 FDR: 4804 [121:41] Calculating protein q-values [121:42] Number of genes identified at 1% FDR: 695 (precursor-level), 633 (protein-level) (inference performed using proteotypic peptides only) [121:42] Quantification [121:44] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S10_Teth_1_S1-B7_1_6638.d.quant [121:44] File #11/15 [121:44] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S11_Teth_2_S1-B8_1_6639.d [122:14] Pre-processing... [122:51] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [122:54] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [126:35] RT window set to 1.66122 [126:35] IM window set to 0.0417736 [126:35] Recommended MS1 mass accuracy setting: 7 ppm [128:34] Main search [130:26] Removing low confidence identifications [130:29] Removing interfering precursors [130:35] Training neural networks on 15444 target and 8434 decoy PSMs [130:44] Number of IDs at 0.01 FDR: 5167 [130:45] Calculating protein q-values [130:46] Number of genes identified at 1% FDR: 756 (precursor-level), 656 (protein-level) (inference performed using proteotypic peptides only) [130:46] Quantification [130:48] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S11_Teth_2_S1-B8_1_6639.d.quant [130:48] File #12/15 [130:48] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S12_Teth_3_S1-B9_1_6640.d [131:18] Pre-processing... [131:56] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [131:59] Calibrating with mass accuracies 30 (MS1), 21 (MS2) [136:24] RT window set to 1.24506 [136:24] IM window set to 0.0433254 [136:24] Recommended MS1 mass accuracy setting: 6 ppm [138:25] Main search [139:52] Removing low confidence identifications [139:55] Removing interfering precursors [140:00] Training neural networks on 13299 target and 6931 decoy PSMs [140:08] Number of IDs at 0.01 FDR: 4651 [140:10] Calculating protein q-values [140:10] Number of genes identified at 1% FDR: 648 (precursor-level), 516 (protein-level) (inference performed using proteotypic peptides only) [140:10] Quantification [140:12] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S12_Teth_3_S1-B9_1_6640.d.quant [140:12] File #13/15 [140:12] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S13_AB_1_S1-C10_1_6652.d [140:43] Pre-processing... [141:29] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [141:32] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [151:06] RT window set to 2.20527 [151:06] IM window set to 0.0443237 [151:07] Recommended MS1 mass accuracy setting: 7 ppm [155:17] Main search [157:38] Removing low confidence identifications [157:40] Removing interfering precursors [157:46] Training neural networks on 7353 target and 4017 decoy PSMs [157:52] Number of IDs at 0.01 FDR: 2094 [157:54] Calculating protein q-values [157:54] Number of genes identified at 1% FDR: 367 (precursor-level), 322 (protein-level) (inference performed using proteotypic peptides only) [157:54] Quantification [157:56] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S13_AB_1_S1-C10_1_6652.d.quant [157:56] File #14/15 [157:56] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S14_AB_2_S1-C11_1_6653.d [158:28] Pre-processing... [159:16] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [159:19] Calibrating with mass accuracies 30 (MS1), 25 (MS2) [163:38] RT window set to 1.91393 [163:38] IM window set to 0.044014 [163:38] Recommended MS1 mass accuracy setting: 8 ppm [166:21] Main search [169:00] Removing low confidence identifications [169:03] Removing interfering precursors [169:08] Training neural networks on 12066 target and 6295 decoy PSMs [169:16] Number of IDs at 0.01 FDR: 4250 [169:17] Calculating protein q-values [169:18] Number of genes identified at 1% FDR: 686 (precursor-level), 614 (protein-level) (inference performed using proteotypic peptides only) [169:18] Quantification [169:20] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S14_AB_2_S1-C11_1_6653.d.quant [169:20] File #15/15 [169:20] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S15_AB_3_S1-C12_1_6654.d [169:51] Pre-processing... [170:37] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 2848122 precursors in range [170:40] Calibrating with mass accuracies 30 (MS1), 25 (MS2) [175:45] RT window set to 1.77484 [175:45] IM window set to 0.0448846 [175:45] Recommended MS1 mass accuracy setting: 8 ppm [178:18] Main search [180:50] Removing low confidence identifications [180:52] Removing interfering precursors [180:58] Training neural networks on 8613 target and 4174 decoy PSMs [181:05] Number of IDs at 0.01 FDR: 3423 [181:06] Calculating protein q-values [181:06] Number of genes identified at 1% FDR: 587 (precursor-level), 512 (protein-level) (inference performed using proteotypic peptides only) [181:06] Quantification [181:09] Quantification information saved to \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S15_AB_3_S1-C12_1_6654.d.quant [181:09] Cross-run analysis [181:09] Reading quantification information: 15 files [181:23] Quantifying peptides [181:38] Assembling protein groups [181:40] Quantifying proteins [181:40] Calculating q-values for protein and gene groups [181:42] Calculating global q-values for protein and gene groups [181:42] Protein groups with global q-value <= 0.01: 977 [181:43] Compressed report saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-first-pass.parquet. Use R 'arrow' or Python 'PyArrow' package to process [181:43] Saving precursor levels matrix [181:43] Precursor levels matrix (1% precursor and protein group FDR) saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-first-pass.pr_matrix.tsv. [181:43] Manifest saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-first-pass.manifest.txt [181:43] Stats report saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-first-pass.stats.tsv [181:43] Generating spectral library: [181:43] 8604 target and 86 decoy precursors saved [181:43] Spectral library saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.parquet [181:44] Loading spectral library D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.parquet [181:44] Spectral library loaded: 1228 protein isoforms, 1163 protein groups and 8690 precursors in 8303 elution groups. [181:44] Loading protein annotations from FASTA camprotR_240512_cRAP_20190401_full_tags.fasta [181:44] Loading protein annotations from FASTA D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\UP000029965_60711_Green_Monkey.fasta [181:45] Annotating library proteins with information from the FASTA database [181:45] Gene names missing for some isoforms [181:45] Library contains 1228 proteins, and 1112 genes [181:45] Initialising library [181:45] Saving the library to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report-lib.parquet.skyline.speclib Second pass: using the newly created spectral library to reanalyse the data [181:45] File #1/15 [181:45] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S1_WT_1_S1-C1_1_6641.d [182:15] Pre-processing... [182:53] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [182:53] Calibrating with mass accuracies 30 (MS1), 21 (MS2) [182:54] RT window set to 0.449857 [182:54] IM window set to 0.0116752 [182:54] Recommended MS1 mass accuracy setting: 9 ppm [182:55] Main search [182:55] Removing low confidence identifications [182:56] Removing interfering precursors [182:56] Training neural networks on 7836 target and 4128 decoy PSMs [183:02] Number of IDs at 0.01 FDR: 6250 [183:02] Calculating protein q-values [183:02] Number of genes identified at 1% FDR: 741 (precursor-level), 659 (protein-level) (inference performed using proteotypic peptides only) [183:02] Quantification [183:03] File #2/15 [183:03] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S2_WT_2_S1-C2_1_6642.d [183:35] Pre-processing... [184:15] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [184:15] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [184:17] RT window set to 0.461456 [184:17] IM window set to 0.0140428 [184:17] Recommended MS1 mass accuracy setting: 10 ppm [184:17] Main search [184:18] Removing low confidence identifications [184:18] Removing interfering precursors [184:18] Training neural networks on 7825 target and 4691 decoy PSMs [184:24] Number of IDs at 0.01 FDR: 5526 [184:24] Calculating protein q-values [184:24] Number of genes identified at 1% FDR: 678 (precursor-level), 613 (protein-level) (inference performed using proteotypic peptides only) [184:24] Quantification [184:25] File #3/15 [184:25] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S3_WT_3_S1-C3_1_6643.d [184:56] Pre-processing... [185:33] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [185:33] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [185:34] RT window set to 0.459102 [185:34] IM window set to 0.0133379 [185:34] Recommended MS1 mass accuracy setting: 9 ppm [185:35] Main search [185:35] Removing low confidence identifications [185:36] Removing interfering precursors [185:36] Training neural networks on 7780 target and 4578 decoy PSMs [185:42] Number of IDs at 0.01 FDR: 5619 [185:42] Calculating protein q-values [185:42] Number of genes identified at 1% FDR: 661 (precursor-level), 570 (protein-level) (inference performed using proteotypic peptides only) [185:42] Quantification [185:44] File #4/15 [185:44] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S4_A_1_S1-C4_1_6644.d [186:14] Pre-processing... [186:52] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [186:52] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [186:54] RT window set to 0.463686 [186:54] IM window set to 0.0132212 [186:54] Recommended MS1 mass accuracy setting: 10 ppm [186:55] Main search [186:55] Removing low confidence identifications [186:55] Removing interfering precursors [186:55] Training neural networks on 7962 target and 4647 decoy PSMs [187:01] Number of IDs at 0.01 FDR: 6022 [187:01] Calculating protein q-values [187:01] Number of genes identified at 1% FDR: 731 (precursor-level), 647 (protein-level) (inference performed using proteotypic peptides only) [187:01] Quantification [187:03] File #5/15 [187:03] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S5_A_2_S1-C5_1_6645.d [187:33] Pre-processing... [188:13] 1068 MS1 and 34152 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [188:13] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [188:15] RT window set to 0.467666 [188:15] IM window set to 0.0158086 [188:15] Recommended MS1 mass accuracy setting: 10 ppm [188:15] Main search [188:16] Removing low confidence identifications [188:16] Removing interfering precursors [188:16] Training neural networks on 7719 target and 4706 decoy PSMs [188:22] Number of IDs at 0.01 FDR: 4886 [188:22] Calculating protein q-values [188:22] Number of genes identified at 1% FDR: 617 (precursor-level), 553 (protein-level) (inference performed using proteotypic peptides only) [188:22] Quantification [188:24] File #6/15 [188:24] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S6_A_3_S1-C6_1_6646.d [188:53] Pre-processing... [189:29] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [189:29] Calibrating with mass accuracies 30 (MS1), 23 (MS2) [189:31] RT window set to 0.462784 [189:31] IM window set to 0.0132911 [189:31] Recommended MS1 mass accuracy setting: 10 ppm [189:32] Main search [189:32] Removing low confidence identifications [189:32] Removing interfering precursors [189:32] Training neural networks on 7750 target and 4302 decoy PSMs [189:38] Number of IDs at 0.01 FDR: 5409 [189:38] Calculating protein q-values [189:38] Number of genes identified at 1% FDR: 659 (precursor-level), 605 (protein-level) (inference performed using proteotypic peptides only) [189:38] Quantification [189:40] File #7/15 [189:40] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S7_B_1_S1-C7_1_6647.d [190:09] Pre-processing... [190:45] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [190:45] Calibrating with mass accuracies 30 (MS1), 21 (MS2) [190:47] RT window set to 0.456159 [190:47] IM window set to 0.0137544 [190:47] Recommended MS1 mass accuracy setting: 10 ppm [190:48] Main search [190:48] Removing low confidence identifications [190:48] Removing interfering precursors [190:48] Training neural networks on 7726 target and 4032 decoy PSMs [190:54] Number of IDs at 0.01 FDR: 5091 [190:54] Calculating protein q-values [190:54] Number of genes identified at 1% FDR: 651 (precursor-level), 591 (protein-level) (inference performed using proteotypic peptides only) [190:54] Quantification [190:55] File #8/15 [190:55] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S8_B_2_S1-C8_1_6648.d [191:25] Pre-processing... [192:01] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [192:01] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [192:03] RT window set to 0.461396 [192:03] IM window set to 0.0129112 [192:03] Recommended MS1 mass accuracy setting: 9 ppm [192:03] Main search [192:04] Removing low confidence identifications [192:04] Removing interfering precursors [192:04] Training neural networks on 7744 target and 4363 decoy PSMs [192:10] Number of IDs at 0.01 FDR: 5769 [192:10] Calculating protein q-values [192:10] Number of genes identified at 1% FDR: 721 (precursor-level), 632 (protein-level) (inference performed using proteotypic peptides only) [192:10] Quantification [192:12] File #9/15 [192:12] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S9_B_3_S1-C9_1_6649.d [192:42] Pre-processing... [193:17] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [193:17] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [193:18] RT window set to 0.465739 [193:18] IM window set to 0.0131814 [193:18] Recommended MS1 mass accuracy setting: 10 ppm [193:19] Main search [193:19] Removing low confidence identifications [193:19] Removing interfering precursors [193:19] Training neural networks on 7305 target and 3375 decoy PSMs [193:25] Number of IDs at 0.01 FDR: 4762 [193:25] Calculating protein q-values [193:25] Number of genes identified at 1% FDR: 621 (precursor-level), 524 (protein-level) (inference performed using proteotypic peptides only) [193:25] Quantification [193:26] File #10/15 [193:26] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S10_Teth_1_S1-B7_1_6638.d [193:56] Pre-processing... [194:31] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [194:31] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [194:32] RT window set to 0.445377 [194:32] IM window set to 0.0130961 [194:32] Recommended MS1 mass accuracy setting: 10 ppm [194:33] Main search [194:33] Removing low confidence identifications [194:34] Removing interfering precursors [194:34] Training neural networks on 7835 target and 4049 decoy PSMs [194:39] Number of IDs at 0.01 FDR: 6249 [194:40] Calculating protein q-values [194:40] Number of genes identified at 1% FDR: 763 (precursor-level), 673 (protein-level) (inference performed using proteotypic peptides only) [194:40] Quantification [194:41] File #11/15 [194:41] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S11_Teth_2_S1-B8_1_6639.d [195:11] Pre-processing... [195:45] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [195:45] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [195:47] RT window set to 0.437827 [195:47] IM window set to 0.013547 [195:47] Recommended MS1 mass accuracy setting: 9 ppm [195:48] Main search [195:48] Removing low confidence identifications [195:48] Removing interfering precursors [195:48] Training neural networks on 7724 target and 4112 decoy PSMs [195:54] Number of IDs at 0.01 FDR: 6338 [195:54] Calculating protein q-values [195:54] Number of genes identified at 1% FDR: 755 (precursor-level), 643 (protein-level) (inference performed using proteotypic peptides only) [195:54] Quantification [195:56] File #12/15 [195:56] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S12_Teth_3_S1-B9_1_6640.d [196:26] Pre-processing... [197:01] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [197:01] Calibrating with mass accuracies 30 (MS1), 22 (MS2) [197:03] RT window set to 0.453264 [197:03] IM window set to 0.0128125 [197:03] Recommended MS1 mass accuracy setting: 10 ppm [197:03] Main search [197:04] Removing low confidence identifications [197:04] Removing interfering precursors [197:04] Training neural networks on 7724 target and 3745 decoy PSMs [197:10] Number of IDs at 0.01 FDR: 5803 [197:10] Calculating protein q-values [197:10] Number of genes identified at 1% FDR: 715 (precursor-level), 641 (protein-level) (inference performed using proteotypic peptides only) [197:10] Quantification [197:11] File #13/15 [197:11] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S13_AB_1_S1-C10_1_6652.d [197:42] Pre-processing... [198:26] 1068 MS1 and 34148 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [198:26] Calibrating with mass accuracies 30 (MS1), 23 (MS2) [198:27] RT window set to 0.450119 [198:27] IM window set to 0.014942 [198:27] Recommended MS1 mass accuracy setting: 10 ppm [198:28] Main search [198:28] Removing low confidence identifications [198:28] Removing interfering precursors [198:28] Training neural networks on 6431 target and 2620 decoy PSMs [198:34] Number of IDs at 0.01 FDR: 3228 [198:34] Calculating protein q-values [198:34] Number of genes identified at 1% FDR: 494 (precursor-level), 446 (protein-level) (inference performed using proteotypic peptides only) [198:34] Quantification [198:36] File #14/15 [198:36] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S14_AB_2_S1-C11_1_6653.d [199:08] Pre-processing... [199:53] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [199:53] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [199:55] RT window set to 0.451386 [199:55] IM window set to 0.0135692 [199:55] Recommended MS1 mass accuracy setting: 10 ppm [199:55] Main search [199:56] Removing low confidence identifications [199:56] Removing interfering precursors [199:56] Training neural networks on 7563 target and 4219 decoy PSMs [200:02] Number of IDs at 0.01 FDR: 5520 [200:02] Calculating protein q-values [200:02] Number of genes identified at 1% FDR: 711 (precursor-level), 616 (protein-level) (inference performed using proteotypic peptides only) [200:02] Quantification [200:04] File #15/15 [200:04] Loading run \\BackupMS4\BackupMS4\MS Raw Files\2025\SCP\20251104_WY_Vero\20250411_S15_AB_3_S1-C12_1_6654.d [200:34] Pre-processing... [201:18] 1068 MS1 and 34150 MS2 scans in 1068 (inferred) and 1068 (encoded) cycles, 8604 precursors in range [201:18] Calibrating with mass accuracies 30 (MS1), 24 (MS2) [201:20] RT window set to 0.435675 [201:20] IM window set to 0.013405 [201:20] Recommended MS1 mass accuracy setting: 10 ppm [201:21] Main search [201:21] Removing low confidence identifications [201:21] Removing interfering precursors [201:21] Training neural networks on 7394 target and 4233 decoy PSMs [201:27] Number of IDs at 0.01 FDR: 4986 [201:27] Calculating protein q-values [201:27] Number of genes identified at 1% FDR: 682 (precursor-level), 579 (protein-level) (inference performed using proteotypic peptides only) [201:27] Quantification [201:29] Cross-run analysis [201:29] Reading quantification information: 15 files [201:29] Quantifying peptides [201:47] Quantification parameters: 0.369982, 0.00396148, 0.0149753, 0.0142927, 0.245756, 0.0931529, 0.290076, 0.260729, 0.30274, 0.0152483, 0.0143035, 0.0131169, 0.760918, 0.510572, 0.495045, 0.0919643 [201:55] Quantifying proteins [201:55] Calculating q-values for protein and gene groups [201:55] Calculating global q-values for protein and gene groups [201:55] Protein groups with global q-value <= 0.01: 880 [201:56] Compressed report saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.parquet. Use R 'arrow' or Python 'PyArrow' package to process [201:56] Saving precursor levels matrix [201:56] Precursor levels matrix (1% precursor and protein group FDR) saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.pr_matrix.tsv. [201:56] Saving protein group levels matrix [201:56] Protein groups matrix saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.pg_matrix.tsv. [201:56] Saving gene group levels matrix [201:56] Gene groups matrix saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.gg_matrix.tsv. [201:56] Saving unique genes levels matrix [201:56] Unique genes matrix saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.unique_genes_matrix.tsv. [201:56] Manifest saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.manifest.txt [201:56] Stats report saved to D:\Users_FPL\2025_DIANN\20250430_Green_Monkey\report.stats.tsv